Barisan dan deret

Barisan adalah suatu susunan bilangan yang dibentuk menurut suatu urutan tertentu. Bilangan-bilangan yang tersusun tersebut disebut suku. Perubahan di antara suku suku berurutan ditentukan oleh ketambahan bilangan tertentu atau suatu kelipatan bilangan tertentu.
Jika barisan yang suku berurutannya mempunyai tambahan bilangan yang tetap,
maka barisan ini disebut barisan aritmetika. 
Misal:
a. 2, 5, 8, 11, 14, ……………. ditambah 3 dari suku di depannya
b. 100, 95, 90, 85, 80, …….. dikurangi 5 dari suku di depannya
Jika barisan yang suku berurutannya mempunyai kelipatan bilangan tetap, maka disebut
barisan geometri.
 Misal :
a. 2, 4, 8, 16, 32, 64, 128, ………. dikalikan 2 dari suku di depannya
b. 80, 40, 20, 10, 5, 2½, ………… dikalikan ½ dari suku di depannya
DERET
Deret adalah jumlah dari bilangan dalam suatu barisan. 
Misal:
 Deret aritmetika (deret hitung) : 2 + 4 + 6 + 8 + 10 = 30
Deret geometri (deret ukur) : 2 + 4 + 8 + 16 + 32 = 62
BARISAN DAN DERET ARITMETIKA
Barisan Aritmatika
U1, U2, U3, …….Un-1, Un disebut barisan aritmatika, jika
U– U1 = U– U2 = …. = Un – Un-1 = konstanta
Selisih ini disebut juga beda (b) = b =Un – Un-1
Suku ke-n barisan aritmatika a, a+b, a+2b, ……… , a+(n-1)b
U1, U2,   U3 …………., Un

Rumus Suku ke-n :
Un = a + (n-1)b = bn + (a-b) ® Fungsi linier dalam n

Misal: 2, 5, 8, 11, 14, ………an
a1 = 2 = a
a2 = 5 = 2 + 3 = a + b
a3 = 8 = 5 + 3 = (a + b) + b = a + 2b
a4 = 11 = 8 + 3 = (a + 2b) + b = a + 3b
an = a + (n-1) b

Jadi rumus suku ke-n dalam barisan aritmetika adalah:
b a a ( n 1 ) n 1 = + – atau S a ( n 1)b n 1 = + – dimana:
Sn = an = Suku ke-n
a1 = suku pertama
b = beda antar suku
n = banyaknya suku
contoh soal :
1. Suatu barisan aritmatika suku ke 3 nya adalah -1 dan suku ke-7 nya 19. tentukan : U70
Jawaban:
Kurangi U3 dengan U7
20 = 4b
Dari b=5, masukkan ke persamaan U7
19 =a +30
a= -11
U70 = 334

Deret Aritmetika (Deret Hitung) 
a + (a+b) + (a+2b) + . . . . . . + (a + (n-1) b) disebut deret aritmatika.
a = suku awal
b = beda
n = banyak suku
Un = a + (n – 1) b adalah suku ke-n
Jumlah n suku
Sn = 1/2 n(a+Un)
= 1/2 n[2a+(n-1)b]
= 1/2bn² + (a – 1/2b)n 
® Fungsi kuadrat (dalam n)
Keterangan:
  1. Beda antara dua suku yang berurutan adalah tetap (b = Sn)
  2. Barisan aritmatika akan naik jika b > 0
    Barisan aritmatika akan turun jika b < 0
  3. Berlaku hubungan Un = Sn – Sn-1 atau Un = Sn’ – 1/2 Sn
  4. Jika banyaknya suku ganjil, maka suku tengah
Ut = 1/2 (U1 + Un) = 1/2 (U2 + Un-1)          dst.
  1. Sn = 1/2 n(a+ Un) = nUt ® Ut = Sn / n
  2. Jika tiga bilangan membentuk suatu barisan aritmatika, maka untuk memudahkan perhitungan misalkan bilangan-bilangan itu adalah a – b , a , a + b
Contoh soal
1. Hitunglah jumlah bilangan antara 1 dan 400 yang habis dibagi 5 tetapi tidak habis dibagi 7
Jawab:
S=Jumlah bil. kelipatan 5 – Jumlah bil. kelipatan 35
_= (5+10+15+…+395) – (35+70+…+385)
_= –
_=
_= 15800 – 2130
_= 13490.
Contoh Soal 2: Seutas tali dipotong-potong menjadi 14 bagian yang panjangnya membentuk barisan aritmatika. Jika tali yang terpanjang 21 cm dan bagian terpendek 4 cm, tentukan panjang tali semula.
Jawab:
S = = 175 cm.
Contoh Soal 3:Di antara bilangan 3 dan 99 disisipkan 15 buah bilangan sehingga bilangan-bilangan yang disisipkan membentuk suatu barisan aritmatika. Cari beda barisan tersebut dan carilah jumlah deret aritmatika tersebut.
Jawab:
Logikanya, jika disisipkan 15 buah bilangan, maka renggang dari 3 sampai 99 ada (15+1)interval.
99 = 3 + 16d, maka d = 6. Jadi, bedanya adalah 6.
S = = 17.51 = 867.

BARISAN DAN DERET GEOMETRI
Barisan Geometri
  • BARISAN GEOMETRI

    U1, U2, U3, ……., Un-1, Un disebut barisan geometri, jika
U1/U2 = U3/U2 = …. = Un / Un-1 = konstanta
Konstanta ini disebut pembanding / rasio (r)
Rasio r = Un / Un-1
Suku ke-n barisan geometri
a, ar, ar² , …….arn-1
U1, U2, U3,……,Un
Suku ke n Un = arn-1
® fungsi eksponen (dalam n)
Misal: 3, 6, 12, 24, 48, ……………..
U1 = 3 = a
U2 = 6 = 3 x 2 = a x r = ar
U3 = 12 = 6 x 2 = ar x r = ar2
U4 = 24 = 12 x 2 = ar2 x r = ar3
Un = ar^(n-1)

Jadi rumus suku ke-n dalam barisan geometri adalah:
Un = arn-1
dimana:
an = suku ke- n (Sn)
a = suku pertama
r = rasio antar suku berurutan
n = banyaknya suku
Deret Geometri (Deret Ukur)

  • DERET GEOMETRI
a + ar² + ……. + arn-1 disebut deret geometri
a = suku awal
r = rasio
n = banyak suku

Jumlah n suku
Sn = a(rn-1)/r-1 , jika r>1
= a(1-rn)/1-r , jika r<1
 ® Fungsi eksponen (dalam n)
Keterangan:
  1. Rasio antara dua suku yang berurutan adalah tetap
  2. Barisan geometri akan naik, jika untuk setiap n berlaku
    U> Un-1
  3. Barisan geometri akan turun, jika untuk setiap n berlaku
    Un < Un-1

    Bergantian naik turun, jika r < 0
  4. Berlaku hubungan Un = Sn – Sn-1
  5. Jika banyaknya suku ganjil, maka suku tengah
    _______      __________
    Ut = 
    Ö U1xUn = Ö U2 X Un-1 dst.
  6. Jika tiga bilangan membentuk suatu barisan geometri, maka untuk memudahkan perhitungan, misalkan bilangan-bilangan itu adalah a/r, a, ar

DERET GEOMETRI TAK BERHINGGA

Deret Geometri tak berhingga adalah penjumlahan dari
U1 + U2 + U3 + …………………………

å
 Un = a + ar + ar² …………………….
n=1

dimana ® ¥ dan -1 < r < 1 sehingga rn ® 0

Dengan menggunakan rumus jumlah deret geometri didapat :
Jumlah tak berhingga S¥ = a/(1-r)
Deret geometri tak berhingga akan konvergen (mempunyai jumlah) untuk -1 < r < 1

Catatan:
a + ar + ar+ ar+ ar+ …….……….
Jumlah suku-suku pada kedudukan ganjil

a+ar+ar4+ …….                     Sganjil = a / (1-r²)


Jumlah suku-suku pada kedudukan genap

a + ar3 + ar5 + ……                  Sgenap = ar / 1 -r²

Sumber : sultanifajar